But How Do You Build One?

Theo ten Brummelaar CHARA – Georgia State University

Things to Think About

- Operating wavelength, bandwidth, site location
- Match apertures to r0
- Tip/tilt adaptive optics
- Optical path length compensation & phase stability
- Dispersion: vacuum or air?
- Metrology

More Things to Think About

- Optics: quality & quantity
- OTF coatings
- Polarization—dynamic & geometrical phase shifts
- Diffraction
- Control & data acquisition systems

Name	Institution	Site	Number of Elements	Element Aperture (cm)	Max. Baseline (m)	Operating Wavelength (microns)	Operating Status
GI2T	CERGA	Calern	2	150	35	0.4 - 0.8 & >1.2	since 1985
COAST	Cambridge U	Cambridge	4	40	100	0.4 - 0.95 & 2.2	since 1991
SUSI	Sydney U	Narrabri	13	14	640	0.4 - 0.66	since 1991
IOTA	CfA	Mt. Hopkins	3	45	38	0.5 - 2.2	since 1993
ISI	Berkeley U	Mt. Wilson	3	165	30(+)	10	since 1990
NPOI	USNO/NRL	Anderson Mesa	6	60	435	0.45 - 0.85	since 1995
PTI	JPL/Caltech	Mt. Palomar	2	40	110	1.5 - 2.4	since 1995
CHARA	Georgia St. U	Mt. Wilson	6	100	350	0.45 - 2.4	since 1999
Keck	CARA	Mauna Kea	2(4)	1,000(180)	165	2.2 - 10	initial 2001
VLTI	ESO	Cerro Paranal	4(3)	840(250)	200	0.45-12	initial 2001
MIRA	NAOJ	Tokyo	2	13	30	??	initial 2002

Site Selection Concerns

- Morphology
- The atmosphere above
- The ground below
- Vibration
- Facilities
- Location

29 June 2002

Michelson Summer School

MIRA

Steel and Concrete

- You need to secure things to 'bedrock'
- Optical and building foundations must be isolated
- Everything needs to be stable at the micron level
- You need to have a contractor you can trust

29 June 2002 Michelson Summer School 16

The Light Must Get In Somehow

- Aperture size: seeing and adaptive optics
- Siderostat Vs Telescope
- How many apertures can you afford?
- Movable Vs Stationary

29 June 2002 Michelson Summer School 20

The Light Has to Reach the Center

The Light Needs to be Stable

- You must have tip/tilt
- Your beam size should be well matched to the seeing
- Adaptive optics may help
- The optical train should not introduce any more instabilities (site/mount vibration)

29 June 2002 Michelson Summer School 27

The Instruments need enclosing....

.... and Thermal Stability

29 June 2002

Michelson Summer School

Delay Lines sit on Rails....

... and Delay the Light.

You Need Metrology that Works

What About a Beam Combiner?

- Modulation scheme temporal or spatial?
- Open air, fiber or a combination?
- How many beams at a time?
- How do you divide the light gray, color or polarization?
- Are fringe tracking and imaging the same thing?

You will Need a lot of Electronics

And Don't Forget the Control System

29 June 2002

Michelson Summer School

Both will Need Debugging

If it all works... you party.

29 June 2002

Michelson Summer School

Optical Long Baseline Interferometry Newsletter

- http://huey.jpl.nasa.gov/olbin/
- Contains links to all existing and proposed optical/IR interferometer projects.
- News
- Papers and preprint information
- Upcoming meetings
- Contact information
- Translations of selected papers
- List of PhD and Masters theses
- Photographs and resources
- Job listings

